45 research outputs found

    Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.The detection sensitivity of silver nanoparticle (AgNP)-tagged goat immunoglobulin G (gIgG) microarrays was investigated by studying surface plasmon resonance (SPR) images captured in the visible wavelength range with the help of a Kretchmann-configured optical coupling set-up. The functionalization of anti-gIgG molecules on the AgNP surface was studied using transmission electron microscopy, photon correlation measurements and UV–visible absorption spectroscopy. A value of 1.3 × 107 M−1 was obtained for the antibody–antigen binding constant by monitoring the binding events at a particular resonance wavelength. The detection limit of this SPR imaging instrument is 6.66 nM of gIgG achieved through signal enhancement by a factor of larger than 4 owing to nanoparticle tagging with the antibody.The European Commissio

    Protostellar collapse: rotation and disk formation

    Full text link
    We present some important conclusions from recent calculations pertaining to the collapse of rotating molecular cloud cores with axial symmetry, corresponding to evolution of young stellar objects through classes 0 and begin of class I. Three main issues have been addressed: (1) The typical timescale for building up a preplanetary disk - once more it turned out that it is of the order of one free-fall time which is decisively shorter than the widely assumed timescale related to the so-called 'inside-out collapse'; (2) Redistribution of angular momentum and the accompanying dissipation of kinetic (rotational) energy - together these processes govern the mechanical and thermal evolution of the protostellar core to a large extent; (3) The origin of calcium-aluminium-rich inclusions (CAIs) - due to the specific pattern of the accretion flow, material that has undergone substantial chemical and mineralogical modifications in the hot (exceeding 900 K) interior of the protostellar core may have a good chance to be advectively transported outward into the cooler remote parts (beyond 4 AU, say) of the growing disk and to survive there until it is incorporated into a meteoritic body.Comment: 4 pages, 4 figure

    Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Get PDF
    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed

    Using zeta-potential measurements to quantify peptide partition to lipid membranes

    Get PDF
    © The Author(s) 2011. This article is published with open access at Springerlink.com.Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.Many cellular phenomena occur on the biomembranes. There are plenty of molecules (natural or xenobiotics) that interact directly or partially with the cell membrane. Biomolecules, such as several peptides (e.g., antimicrobial peptides) and proteins, exert their effects at the cell membrane level. This feature makes necessary investigating their interactions with lipids to clarify their mechanisms of action and side effects necessary. The determination of molecular lipid/water partition constants (Kp) is frequently used to quantify the extension of the interaction. The determination of this parameter has been achieved by using different methodologies, such as UV-Vis absorption spectrophotometry, fluorescence spectroscopy and ζ-potential measurements. In this work, we derived and tested a mathematical model to determine the Kp from ζ-potential data. The values obtained with this method were compared with those obtained by fluorescence spectroscopy, which is a regular technique used to quantify the interaction of intrinsically fluorescent peptides with selected biomembrane model systems. Two antimicrobial peptides (BP100 and pepR) were evaluated by this new method. The results obtained by this new methodology show that ζ-potential is a powerful technique to quantify peptide/lipid interactions of a wide variety of charged molecules, overcoming some of the limitations inherent to other techniques, such as the need for fluorescent labeling.This work was partially supported by project PTDC/QUI/ 69937/2006 from Fundação para a Ciência e Tecnologia-Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), and by Fundação Calouste Gulbenkian (Portugal). JMF and MMD also thank FCT-MCTES for grants IMM/BT/37-2010 and SFRH/BD/41750/2007, respectively

    Magnetically Controlled Spasmodic Accretion During Star Formation. I. Formulation of the Problem and Method of Solution

    Full text link
    We formulate the problem of the late accretion phase of the evolution of an isothermal magnetic disk surrounding a forming star. The evolution is described by the six-fluid MHD equations, accounting for the presence of neutrals, atomic and molecular ions, electrons, and neutral, positively, and negatively charged grains. Only the electron fluid is assumed to be attached to the magnetic field, in order to investigate the effect of the detachment of the ions from the magnetic field lines that begins at densities as low as 10^8 cm^-3. The "central sink approximation" is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 10^11 cm^-3. In this way, the structure and evolution of the isothermal disk surrounding the forming star can be studied at late times without having to implement the numerically costly radiative transfer required by the physics of the opaque core. The mass and magnetic flux accumulating in the forming star arecalculated, as are their effects on the structure & evolution of the surrounding disk. The numerical method of solution first uses an adaptive grid and later, after a central region a few AU in radius becomes opaque, switches to a stationary but nonuniform grid with a central sink cell. It also involves an implicit time integrator, an advective difference scheme that possesses the transportive property, a second-order difference approximation of forces inside a cell, an integral approximation of the gravitational and magnetic fields, and tensor artificial viscosity that permits an accurate investigation of the formation and evolution of shocks in the neutral fluid.Comment: Astrophysical Journal, in press. 32 page

    Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    Get PDF
    This paper introduces a new disk code, called ProDiMo, to calculate the thermo-chemical structure of protoplanetary disks and to interpret gas emission lines from UV to sub-mm. We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling balance with the consistent calculation of the hydrostatic disk structure. We include FeII and CO ro-vibrational line heating/cooling relevant for the high-density gas close to the star, and apply a modified escape probability treatment. The models are characterized by a high degree of consistency between the various physical, chemical and radiative processes, where the mutual feedbacks are solved iteratively. In application to a T Tauri disk extending from 0.5AU to 500AU, the models are featured by a puffed-up inner rim and show that the dense, shielded and cold midplane (z/r<0.1, Tg~Td) is surrounded by a layer of hot (5000K) and thin (10^7 to 10^8 cm^-3) atomic gas which extends radially to about 10AU, and vertically up to z/r~0.5. This layer is predominantly heated by the stellar UV (e.g. PAH-heating) and cools via FeII semi-forbidden and OI 630nm optical line emission. The dust grains in this "halo" scatter the star light back onto the disk which impacts the photo-chemistry. The more distant regions are characterized by a cooler flaring structure. Beyond 100AU, Tgas decouples from Tdust even in the midplane and reaches values of about Tg~2Td. Our models show that the gas energy balance is the key to understand the vertical disk structure. Models calculated with the assumption Tg=Td show a much flatter disk structure.Comment: 24 pages, 14 figures, 120 equations, accepted by A&A, download a high-resolution version from http://www.roe.ac.uk/~ptw/prodimo1_article.pd

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Meridional circulation in turbulent protoplanetary disks

    Full text link
    Based on the viscous disk theory, a number of recent studies have suggested there is large scale meridional circulation in protoplanetary disks. Such a flow could account for the presence of crystalline silicates, including calcium- and aluminum-rich inclusions (CAIs), at large distances from the sun. This paper aims at examining whether such large-scale flows exist in turbulent protoplanetary disks. High-resolution global hydrodynamical and magnetohydrodynamical (MHD) numerical simulations of turbulent protoplanetary disks were used to infer the properties of the flow in such disks. By performing hydrodynamic simulations using explicit viscosity, we demonstrate that our numerical setup does not suffer from any numerical artifact. The aforementioned meridional circulation is easily recovered in viscous and laminar disks and is quickly established. In MHD simulations, the magnetorotational instability drives turbulence in the disks. Averaging out the turbulent fluctuations on a long timescale, the results fail to show any large-scale meridional circulation. A detailed analysis of the simulations show that this lack of meridional circulation is due to the turbulent stress tensor having a vertical profile different from the viscous stress tensor. A simple model is provided that successfully accounts for the structure of the flow in the bulk of the disk. In addition to those results, possible deviations from standard vertically averaged alpha disk models are suggested by the simulations and should be the focus of future work. Global MHD numerical simulations of fully ionized and turbulent protoplanetary disks are not consistent with the existence of a large-scale meridional flow. As a consequence, the presence of crystalline silicates at large distance for the central star cannot be accounted for by that process as suggested by recent models based on viscous disk theory.Comment: 16 pages, 13 figures, changes according to referee report. Accepted to Astronomy and Astrophysic

    From clouds to stars - Protostellar collapse and the evolution to the pre-main sequence - 1. Equations and evolution in the Hertzsprung-Russell diagram

    No full text
    We present the first study of early stellar evolution with "cloud" initial conditions utilizing a system of equations that comprises a solar model solution. All previous studies of protostellar collapse either make numerous assumptions specifically tailored for different parts of the flow and different parts of the evolution or they do not reach the pre- main sequence phase. We calculate the pre-main sequence properties of marginally gravitationally unstable, isothermal, equilibrium "Bonnor-Ebert" spheres with an initial temperature of 10 K and masses of 0.05 to 10 M. The mass accretion rate is determined by the solution of the flow equations rather than being prescribed or neglected. In our study we determine the protostar's radii and the thermal structure together with the mass and mass accretion rate, luminosity and effective temperature during its evolution to a stellar pre-main sequence object. We calculate the time needed to accrete the final stellar masses, the corresponding mean mass accretion rates and median luminosities, and the corresponding evolutionary tracks in the theoretical Hertzsprung-Russell diagram. We derive these quantities from the gas flow resulting from cloud collapse. We do not assume a value for an "initial" stellar radius and an "initial" stellar thermal structure at the "top of the track", the Hayashi-line or any other instant of the evolution. Instead we solve the flow equations for a cloud fragment with spherical symmetry. The system of equations we use contains the equations of stellar structure and evolution as a limiting case and has been tested by a standard solar model and by classical stellar pulsations (Wuchterl & Feuchfinger 1998; Feuchfinger 1999; Dorfi & Feuchfinger 1999). When dynamical accretion effects have become sufficiently small so that a comparison to existing hydrostatic stellar evolution calculations for corresponding masses can be made, young stars of 2 M. appear close to the location of the Henyey part of the respective classical evolutionary track and at substantially larger ages for given luminosities than those inferred from previous calculations. 1 M. stars appear at lower luminosities, to the left of the corresponding Hayashi-tracks and are about 1 Myr older than an a-priori hydrostatic stellar evolution model at the same luminosity. They burn most of their deuterium during the main accretion phase before mass accretion halts and they become visible. They do not become fully convective during the entire evolution calculated, i.e., up to 1.5 Myr. Altogether the structure of our solar mass star at 1 Myr, with its raditive core and convective envelope, resembles the present Sun rather then a fully convective object. Very low mass stars and proto brown dwarfs close to the substellar limit appear with luminosities close to those at the "top of the tracks", giving ages roughly in accordance with classical values, tentatively at 0.05 to 0.09 dex higher effective temperatures
    corecore